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Abstract— After the great success of semiconductor microelectronics in the last century, the nanoscale semiconductor materials emerged 

as the building blocks of the next generation of electronic, optoelectronic and chemical sensing devices. The main challenges in the field of 

nanoscale semiconductor electronics is to the rational control as well as manipulation of synthesis to derive materials with one of their 

dimensions and upscale production of devices. For the reason, in theoretical study of the movement of electron and electronic structure is 

very much necessary. The article reviews the contribution of various researcher for and their work for explaining the band structure of 

semiconductor nanomaterials.  The development and deployment of these theoretical study play a role in achieving the goals of 

nanoscience and nanotechnology. 

Index Terms— semiconductor nanoparticles, quantum confinement effect  

——————————      —————————— 

1 INTRODUCTION                                                                     

ow‐a‐days, the impact of nanoscience and nanotechnolo-
gy is spread out all over the globe. This technology in-
volves precise utilization of nanostructured material 

(NSM) [1]. These NSMs are the ultra‐fine material structures 
having an average phase or grain size on the order of a few na-
nometres (10‐9m). Each nanoparticle in NSMs can be considered 
as a “nano crystallite” of a typical size of the order of few na-
nometres, consisting of 100’s to ,000,000’s of atoms. It is a state 
of matter in the transition region between bulk solid and mo-
lecular structure [2‐5]. The importance of NSMs is being real-
ized owing to its unique size‐dependent characteristics in the 
sense that materials with similar chemical composition but dif-
ferent dimension behave differently. With size reduction, its 
physical properties gradually shift form bulk behaviour to-
wards molecular behaviour. 

 Although NSMs are considered as an invention in the area 
of modern science, they actually have a long history. NSMs 
were used by artisans as far back as the 9th century in Mesopo-
tamia for generating a glittering effect on the surface of pots. 
Egyptians also knew to use the healing powers of gold nanopar-
ticles against wounds and physical ailments. The use of colloi-
dal particles of gold and different materials was known and 
used by the Romans toward the middle age (for e.g. staining of 
glass).In modern times, it was the great alchemist Paracelsus 
who first prepared gold colloid solution (16th century). He 
called his purple solution of gold Aurum Potable (Latin: potable 
gold) and believed it cured all manner of physical, mental, and 
spiritual ailments. But serious study on gold colloids did not 
start until the mid‐19th century by Faraday, who prepared the 
first pure colloidal gold which he called ‘activated gold’ [6]. He 
used phosphorus to reduce a solution of gold chloride for the 
development his colloidal gold. These colloidal solutions were 
the first, which gives us an idea about size effects. Faraday was  

the first started to study the size dependence of the physi-
calproperties of a material. He also used gold, but proceeded in 
the other direction tostudy the size effect: he started with very 
small pieces of gold (nanocrystalline gold) in solution and, by 
pressing them together, made bigger pieces of gold. His 
amazement at what he observed is clear from the March 11, 
1856 entry in his diary [6]. 

“and then put on the gold above the convex sur-
face of a rock crystal plano convex lens and 
pressed it by hand steadily, rocking it a little. This 
pressure converted the violet or dark tint of the 
place [of contact] to a beautiful green ‐ far more 
beautiful than any I have seen in a gold leaf beat-
en ‐ the effect was perfect.” 

Faraday was one of the greatest scientists of the 19th century. 
So, it is not at all surprising that his diary continues with, what 
we now know to be, a rather accurate explanation of this phe-
nomenon: 

“Has the pressure converted the layer of atoms 
into a continuous layer by expansion and weld-
ing, and is that all the difference? I rather think it 
is. . .. So it appears that these different layers are 
all gold, and owe their different appearances not 
to composition but to physical differences.” 

Faraday discovered that the color (or to be more precise: the 
electronic structure) of a metal can become size dependent be-
low a certain critical size. What this critical size was, and why it 
was different for the different metals that he investigated, was 
something that Faraday could not understand fully. In the early 
twentieth century, work on the glasses containing Cadmium 
Sulphide (CdS) showed that there was a red‐ shift in the absorp-
tion threshold with the growth of CdS particle size [7]. So far, it 
is the first experiment that proved that this size dependence of 
material properties also applied to semiconductors. It was 
found that both the absorption and the emission of CdS shifted 
towards shorter wavelengths for smaller crystallite sizes. Again, 
a qualitative explanation was sought in terms of the reduced 
size of the CdS crystal and shifting of absorption peaks. 

During the first half of 20th century it was revealed that a 
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Fig 1: Part of a periodic table 

material can become strongly dependent on the size of the ma-
terial below a certain threshold size. But no adequate explana-
tion of the size effects was at that time. It was the seventies, the 
impetus progress in the development of analytical skills and the 
fabrication of low‐dimensional semiconductor structures made 
it possible to understand physical basis of such effects in quanti-
tative qualitative ways. 

In the late 1960’s researchers reported differences between 
the absorption spectra of colloidal semiconductor particles and 
the spectra of the corresponding macro‐crystalline materials in 
1967, Berry reported that the absorption onset of suspensions of 
crystals of AgBr [8] and AgI [9] was shifted to shorter wave-
lengths as compared to the macro‐crystalline material, and 
made the following statement: 

“The observed shift of the absorption curve to 
shorter wavelengths should not be regarded as 
suggesting a mechanism in which the band gap is 
widened, but as either a decreased number of ab-
sorbing atoms or a decreased efficiency of the 
phonon‐assisted electronic transitions.” 

In 1968, Stasenko presented experiments on the thin films of 
CdS [10], motivated by the prediction from Sandomirskii (1963) 
that for very thin semiconductor films the band gap is inversely 
proportional to the square of the film thickness [10]. The results 
were in good agreement with the theoretically predicted shift of 
the bandgap and he reported: “Such a forbidden‐energy gap 
increase is connected with quantum effects” It was realized in 
the early 1980’s that these quantum effects are not only respon-
sible for the different properties of the nanostructured materials 
as compared to the macro crystalline material, but also for some 
the peculiar behavior of particles. Some 15 years after the firm 
statement by Berry, it was shown that the mechanism that he 
ruled out (widening of the band gap) is in fact responsible for 
his observations. In the last two-decade researcher successfully 
explain most of the properties in lowdimensional systems. 

Among the massive number of materials available in the 

today’s world, people able to develop and analysis large varie-

ty of materials at nanoscale regime as  

 Metals: gold [Au], silver [Ag], palladium, platinum, 

cobalt. 

 Semiconductors: Elemental (Si, Ge), II-VI (ZnS, CdS, 

CdTe, ZnSe ),III-V(GaAs, 

GaN, InP, GaAs), IV-VI(PbS, PbTe, PbTe) systems 

 Oxides: ZnO , TiO2,Ga2O3, Al2O3,MgO etc. 

All of these materials show extensively new verities of proper-
ties, which make them as candidate for today’s technology base 
world. Metal nanoparticles (Ag, Au etc) exhibit plasmon ab-
sorbance bands in the visible spectral region that are controlled 
by the size of the particles [11]. Numerous studies reported on 
the labeling for bioassays and staining of biological tissues us-
ing those metal nanoparticles as means to analyze and visualize 
biological processes [12‐18]. Among the Oxides materials, the 
well‐known nanocrystalline film of titanium dioxide was shown 
to be utilized for dye‐sensitized solar cells [19, 20]. Now a day, 
effort is being put worldwide to develop and assemble quality 
semiconductor nanostructures for variable application in indus-
tries. 

2 SEMICONDUCTOR NANOSTRUCTURE MATERIALS 

A typical semiconductor has an electrical conductivity be-
tween that of a conductor and an insulator (103 ohm-1cm-1 to 
10-8 ohm-1cm-1 ) There are four major types of semiconductor 
materials as listed below - 

2.1 ELEMENTAL SEMICONDUCTORS: 

 The elemental semiconductor materials comprise of elements 
from group IV of the periodic table. The materials crystallized 
into possess narrow indirect band gaps. Silicon (Si) and Ger-
manium (Ge) are typical of such kind. 

2.2 BINARY COMPOUNDS SEMICONDUCTOR:  

Binary compounds semiconductor: These kinds of semicon-
ductors are compounds of two different group elements. 
These kinds of semiconductors are compounds of two differ-
ent group elements. The choices are - 

(a) Column III with column V (III-V's): AIIIBV 
Example: GaAs, GaN, InP etc 

(b) Column II with column VI (II-VI's): AIIBVI 
Example: ZnS, CdS, ZnO etc 

(c) Column IV with Column VI (IV-VI's): AIVBVI 
Example: PbS, PbSe, PbTe etc 

The energy band gap of II-VI systems is found wider while for 
the IV-VI system it is found narrower. 
 

2.3 TERNARY ALLOY SEMICONDUCTOR: 

These are alloys of two binary compound semiconductors. 
Ternary alloys have two elements from one column and one 
from another. Depending on the substation sites (cation-
ic/anionic) can have two options: 

AIII(x) B III(1‐ x) C V = [AIII CV](x) + [BIII CV] (1‐ x) 
AIII BV(y) C V(1‐ y) = [A III B V](y) + [A III C V] (1‐ y) 

Some of the commonly used ternary semiconductor alloys are 
Aluminium gallium arsenide ( AlxGa1‐xAs), Indium gallium 
arsenide (InXGa1‐x As), Aluminium indium antimonide (Alx-
In1‐xSb), Gallium arsenide nitride (GaxAs1‐xN), Aluminium 
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Fig 2: Energy gap (Eg) in bulk, nanocrystal and  molecule  

gallium phosphide (AlxGa1‐xP), Indium gallium nitride 
(InxGa1‐xN), Indium arsenide antimonide (InxAs1‐Sb) 

2.4 QUATERNARY ALLOYS SEMICONDUCTOR: 

Quaternaries alloys are consisting of 4 elements. It may be 
mixer of four binary semiconductor or three binary semicon-
ductors. Some such semiconductors are: Aluminium gallium 
indium phosphide (AlGaInP); Aluminium gallium arsenide 
phosphide (AlGaAsP); Indium gallium arsenide phosphide 
(InGaAsP); Aluminium indium arsenide phosphide (AlInAsP); 
Aluminium gallium arsenide nitride (AlGaAsN); Indium galli-
um arsenide nitride (InGaAsN); Indium aluminium arsenide 
nitride (InAlAsN) 
 

Although nanostructured materials are objects made out of 
metallic, semiconductor or insulating materials, in the last two 
decades, there has been much research on nanoparticles made 
out of semiconductor system, especially on II‐VI semiconduc-
tor types, e.g. CdSe, CdTe, CdS, ZnS, etc. Any of these semi-
conductor materials containing grain size or clusters below 
100 nm or layer, filament of that dimension is considered as 
semiconductor nanostructure. It is a state of matter in the tran-
sition region between bulk solid and molecular structure. The 
NSMs materials have unique characteristics in the sense that 
materials with similar chemical composition but different di-
mension behave differently. The properties gradually change 
from bulk behavior to molecular behavior with decreasing 
particle size. It is due to the quantum mechanical phenomenon 
which dominates in low dimension al structures which results 
and are associated with: 

• Enhancement in band gap and evolution of discrete en-
ergy levels. 

• Extremely high surface to volume ratio (>>1) compared 
to bulk which is about 10% for 100 Å particles and 90% 
for 10 Å particles. 

• Enhancement in excitonic binding energy with respect to 
bulk as a result of which the exciton absorption can be 
visible at the room temperature 

• Enhancement in the oscillator strength with respect to 
bulk 
 
 
Since in a NSM, most of the atoms are displayed on the 

surface than the core, surface reactivity increases at large. It 
has been reported that their optical, electronic, magne-
to‐optical and catalytic properties can be uniquely vary with 
size [21‐23]. It is expected that the size dependent properties 
of the nanocrystals is just enormous. To name a few are mi-
croelectronics, electro‐optics, nonlinear optics, catalysis, pho-
tography, electrochemistry and many more. 
The specific properties of NSMs materials can have two dif-
ferent possible origins. First, Size effects, which result from 
the spatial confinement of carrier motion in a 

low‐dimensional system. An example is the confinement of 
electron wavefunctions inside a region whose size is smaller 
than the electron mean free path. This class of effects may 
give birth to completely new properties. Second one is the 
surface effects, which are a consequence of the significant 
volume fraction of matter located near surfaces, interfaces, or 
domain walls. 
 

3. QUANTUM EFFECTS IN SEMICONDUCTOR 

NANOSTRUCTURES: 

In the early eighties, quantum confinement effect on small 
particles in suspension was first reported in the early 1980s by 
Ekimov[25] , Efros [26] and Papavassiliou [27]. Later, Brus et 
al. [28,29] laid out the proper framework for understanding 
such effects from the view point of molecular quantum phys-
ics. This quantum confinement is observed in semiconductor 
crystals with sizes of few nanometer due finite size of the crys-
tal, which limits the motion of electrons, holes, and excitons (a 
quasi‐particle a electron‐hole pair interacting each other via 

coulomb potential) cab be restricted along one or more direc-
tion . The excitons correspond to a hydrogen like bound state 
of an electron‐hole pair and characterized by an exciton Bohr 
radius defined as [30] ‐ 

 
This exciton Bohr radius ɑB  is considerably larger the re-

spective value for a hydrogen atom (~0.53Å). For most of the 
semiconductors it is ~ 1‐  10 nm. 

The excitonic Bohr radius is a useful parameter in quanti-
fying the quantum confinement effect in NSMs. We can say 
“Quantum confinement effects” arise when the size of a nano-

 

(1) 

 Where,   relative dielectric constant (high 
frequency),  effective mass of electron, 

 effective mass of hole. 
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crystal is comparable to the length parameters i.e., the deBro-
glie wavelength λ and exciton Bohr radius (ɑB ) of the carriers 
(electrons, holes, excitons).When the radius of a particle ap-
proaches the excitonic Bohr radius the movement of carriers 
(excitons, electrons, holes) is confined and coulomb interaction 
is increased, thereby increasing excitonic binding energy. This 
leads to drastic changes in the electronic structure of NSMs. 
The changes include shift of the energy levels to higher ener-
gy, the development of discrete feature of the spectra and the 
development of strong oscillator strength between selective 
transitions. 

The first explanation for the quantum confinement effect 
in nanocrystals was Effective Mass Approximation (EMA) 
given by Efros and Efros [26]. This approach, based on the 
‘particle in a box model’ and the effective masses of the elec-
tron (me

* ) and the hole (mh
* ), with parabolic bands EMA is 

based on the following assumptions‐  
(1) The crystal structure of the Quantum dot (nanoparticle) is 
same as that of the bulk material  
(2) The Quantum dot or nanoparticle is assumed to be spher-
ical in shape with a  radius ‘R’  
(3) The potential barrier at the surface of the QD is infinite. 

 
The real space stationary Schrödinger equation for an electron 
in a bulk crystalline solid with a spatially periodic potential is 
 

 
The potential V may include the ionic potential with respect to 
lattice translations such that 

 
The Bloch theorem indicates that an eigenfunction of the 
Schrodinger equation for a periodic potential is the product of 
a plane wave  times a function  which has the 
same periodicity as periodic potential  . Thus, we get 

 

(4) 

                      with  (5) 
 

Assuming a parabolic band, the eigenvalues of Equation (2) 
for the eigenfunctions K(r) can be given by 

 

(6) 

where,  m* bening the effective mass of electron and hole 
An excited state of a nanocrystal can be considered quantum 
mechanically as electron-hole-pair states inside a spherical 
potential. In the envelope function approximation, the eigen-

state is composed of an envelope function  (r) and a 
periodic part U k of Bloch function  k (r) , i.e. 

 

(7) 

For non-interacting electron-hole pairs, the envelop function 
consists of independent contributions from electrons and holes 
and can be written as 

 

(8) 

The periodic part is assumed to be the same in the barrier 
(well), so - 

 

(9) 

The Hamiltonian operator for the envelope function in sin-
gle parabolicpotential approximation and without coulomb 
interaction is given by - 

 

(10) 

Such that the confining potential V(r) becomes 

 

(11) 

The normalized wave functions  l for electron and hole 
can be obtained by solving the Schrodinger equation using the 
wave function Eq. (8) and Hamiltonian eq.(10 ) with boundary 
conditions eq. (12) [Davydov 1987]. This results in 

 

 

(12) 

with  l ≤ m ≤ l  and l = 0, 1, 2, 3  

Here, J l  are Bessel functions and Yl m are shpherical harmonics.  
The energy eigenvalues can be derived by applying the 

boundary condition that the wavefunction has to vanish at the 
QD matrix interface, i.e 

 

(13) 

 This gives the eigenvalues – 
 

 

(for electron) (14 a) 

 

(for hole) (14 b) 

Where, χ nl  is the nth  zero of spherical Bessel 
function or order l, me, mh are the effective masses 
of electron and hole respectively; R is the radius of 
the nanocrystal 

Thus, labeling the quantum number l= 0,1,2…., the first 
roots are 

 

 

(2) 

        Where the first term represents the kinetic 
energy operator for the electron and V(r) is 
the periodic potential energy experienced by 
the electron 

 
(3) 

 where, T, is lattice translational vector 
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Table 1: values of  

 

 

Fig 3: Energy levels of spherically symmetric semiconductor 
nanostructure (quantum dot) according to EMA  

 
The lowest quantized energy state with n=1 and l=0 is given by 

 

for electron (15 a) 

for hole  (15 b) 

Using these results we can calculate the energy levels of elec-

tron and hole using the values of as  

So, the enhancement in band gap due to quantum confinement 

 

(16) 

It theory also implies that the energy discretization scales 

with the square of the inverse radius (R) 

The quantum mechanical picture of a particle in a spherical 

potential as given above deals with the envelope function. The 

Bloch part assumed to be a simple direct bandgap semicon-

ductor with parabolic and isotropic bands. In reality, the Bloch 

part, for example, for semiconductor materials with indirect 

band gap and for anisotropic crystal structures (e.g. 

zinc-blende, wurtzite, perovskite etc ) needs modification for a 

better understanding of the optical behavior of QDs 

Though EMA described by addressed quite well about the 

quantum confinement effect, however Efros and Efros has ex-

cluded the columbic interaction between hole and electrons 

present in the Quantum Dot. Brus et al (1983) have considered 

Coulomb interaction between the localized carriers which has 

modified the single-particle picture to a great extent. The mod-

ified Hamiltonian with the Coulomb interaction between the 

electron and hole inside the QD can be expressed as 

 

(17) 

Where, ε2 is the dielectric constant of the QD. |re  rh| is the 

difference in the coordinates defining the columbic interaction 

between the electron and hole. 

Using perturbation approach Brus [28, 29] developed the 

expression for the lowest excited state energy as - 

 

(18) 

Using variational calculations Kayanuma give the expres-

sion for the lowest excited state energy as [31], 

 

(19) 

where, exciton binding energy 
 
Later on Kayanuma identified two limiting cases depend-

ing upon the ratio of the radius of the quantum dot to the Bohr 
exciton radius, of the bulk solid [32]. For  R/ ɑB>>1,  the exciton 
can be pictured as a particle moving inside the quantum dot 
with only little increment in confinement energy. This is the 
weak confinement regime. In the strong confinement regime 
R/ ɑB<< 1 and independent particle confinement effects comes 
to the forefront. It was pointed out that in this regime, the elec-
tron and the hole should be viewed as individual particles in 
their respective single particle ground states with negligible 
spatial correlation between them owing to the increased kinet-
ic energy term. Kayanuma[31] further found that the strong 
confinements are observable upto R  2 ɑB,  . In this regime 
EMA is valid to a great extent in the where the effective mass 
approximation is relatively more valid, though quantitatively 
EMA fails to account for the observed changes. 

The equation (19) gives a good fit of the experimentally ob-
served relation between E and R for the case of weak confine-
ment regime. But it is unable to observed phenomena explain 
the strong confinement regime where the EMA with infinite 
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barriers breaks down. Thus, for larger sizes of the nanocrystal-
lites, the infinite potential effective mass approximation 
(IP-EMA) gives a good description of the band gap variation 
with size. However, it grossly overestimates the change, ΔEg, 
in the bandgap for smaller nanocrystals. In the infinite poten-
tial EMA (IP-EMA) model, it was essentially neglects any pos-
sibility extending of the wavefunction beyond the surface of 
the nanocrystals as a consequence of the assumption of a rigid 
wall (infinite potential). This model ignores the tunneling pos-
sibility of the electrons and the holes of the surface atom to 
outside the nanocrystal. 

To overcome the shortcomings of the IP-EMA, Kayanuma 
and Momiji [33] used the finite potential to account for the 
experimental data for small CdS crystallites. The confining 
potentials Ve, for the electron and Vh, for the hole, satisfy the 
relation Eg +Ve + Vh = E1g, where E1g is the band gap energy of 
the surrounding material. The resulting problem was solved 
by variational principle in the Hylleraas coordinate system. In 
addition to spherical clusters, Kayanuma and Momiji also 
treated cylindrical shaped microcrystallites in EMA model . Lo 
and Sollie (1991), Tran Thoai etal (1990) and Hu et al (1990) 
used variational calculation in finite potential well to improve 
further the EMA model. 

Although the finite potential effective mass of the electron 
describes quite well using a single conduction band, the top 
level of the valence band in these semiconductor systems is 
degenerate and the description of the hole effective mass 

requires more number of bands. In this context, the mul-
ti-band effective mass approximation (MBEM) theory [34] rep-
resents a substantial improvement over the single band, infi-
nite potential EMA model. For CdSe nanocrystals, the size 
dependence up to 10 excited states in the absorption spectra 
are successfully described by the uncoupled multi-band EMA 
[34,35] . This includes the valence band degeneracy, but does 
not couple the valence and conduction bands. Banin et al [36] 
have used the multi-band EMA including the valence and the 
conduction band coupling. They use an eight band Lut-
tinger-Kohn Hamiltonian to calculate the quantum size levels 
in InAs. Such improvements over the over simplified IP-EMA 
model was found to satisfactory. 

The other approach which is widely used to explain the 
band structure of nanostructures is Linear combination of 
atomic orbital theory- molecular orbital theory (LCAO). This is 
based on a bottom up approach where the combination of  
atomic orbital and molecular orbital (LCAO-MO) is consid-
ered. In this method, nanoparticles are considered as large 
molecules and the overall wave function in a nanoparticle can 
be constructed form the wave function of individual atomic 
orbital. It provides a more detailed basis for predicating the 
evolution of the electronic structure of clusters, from atoms 
and/or molecules to nanoparticles to bulk materials. 

The simplest case is that of a molecule consisting of only 
two atoms, where 

two atomic orbitals combine to make a bonding and an an-
ti-bonding molecular orbital 

(MO). When only the low-energy (bonding) MO is filled 
with electrons, it is called the Highest Occupied Molecular 
Orbital (HOMO). In that case, the high-energy (anti- bonding) 

level is empty and referred to as the Lowest Unoccupied Mo-
lecular Orbital (LUMO). As the number of atoms increase, the 
discrete energy band structure changes form large energy 
steps to small energy steps that are to a continuous energy 

band. The energy difference between the top of the HOMO 
and bottom of the LUMO (equals to the band gap Eg ) gets 
decreased, and the bands split into discrete energy levels of 
reduced mixing of atomic orbitals for a small number of at-
oms. Therefore, the small size of the nanoparticles results in 
quantized electronic band structures intermediate between the 
atomic/molecular and bulk crystalline molecular orbitals. 

When the molecule becomes larger, more energy levels 
arise, and the energy spacing between the HOMO and LUMO 
becomes smaller. 

In this model, a nanoparticle (quantum dot) can be regard-
ed as a very large molecule or cluster consisting of a few hun-
dred or thousand atomic valence orbitals, forming as many 
MOs. Still, there exist discrete energy levels at the edges of the 

“bands”, and the spacing between the HOMO and LUMO 
levels (i.e. the bandgap) becomes smaller when the it increases 
in size. This explains both quantum confinement effects from a 
molecular point-of-view. Finally, when the semiconductor be-
comes even larger, the energy-spacing between the MO levels 
becomes so small that the different energy levels cannot be 
distinguished experimentally and it is considered as a band of 
continuous energy levels in a bulk semiconductor. 

This LCAO-MO approach provides the tight-binding model 
(Slater and Koster [37]) which is an efficient scheme to calcu-
late the electronic structure of periodic solids. As this method 
is computationally much less demanding compared to other 
methods such as the plane-wave methods, it has been exten-
sively employed to calculate electronic structures of various 
metals, semiconductors, clusters and a number of complex 
systems such as alloys and doped systems. 

The tight-binding electronic parameters, namely the orbital 
energies and the hopping strengths, were determined by fit-
ting the ab initio band dispersions to the band dispersion ob-
tained form the tight-binding Hamiltonian, given by 

 

(20) 

where, the electron with spin σ is able to hop from orbital 
labeled l1 with onsite energies equal to l1 in the ith unit cell to 
those labeled l2 in the jth unit cell with a hopping strength        
t i j l 1l2  , with the summations l1 and l2 running over all the or-
bitals considered on the atoms in a unit cell, and i and j over 
all the unit cells in the solid. To calculate the eigen value spec-
tra of nanocrystals, we need to know the ’s for the 
various orbitals and the t’s for the interactions. These are eval-
uated by performing a TB-fit with a prudent choice of the ba-
sis orbitals and the interactions, to the band structure of the 
bulk solid obtained from first principle calculations such as 
pseudo- potential methods. 

Lippens and Lannoo [38] was the first to use ‘Tight Binding 
Method’ to calculate the variation band gap with size for Cds 
and ZnS nanocrystals. They use sp3s* orbital basis with only 
the nearest neighbor interactions as suggested by the work of 
Vogl et al.[39] for bulk semiconductor materials. The calcula-
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Table 2: values of of a, b, c 

 

tions were carried out for clusters ranging in size from 17 at-
oms (3 shells) to 2563 atoms (15 shells). They took the valence 
band to be parabolic but non-parabolicity is considered for the 
conduction band. Wang and Herron (1996) successfully calcul 
te the energy levels of the CdS clusters (~20Å) using tight 
binding model considering non-parabolic valence and 
conduction band. Sarma et al studied in details of band gap 
enhancement of the semiconductor quantum dot based on TB 
model and gives the expression for band gap 
enhancement as [40-42]. 

 

(21) 

Here, D is the diameter of quantum dot. The a, b and c pa-
rameters aredependent on the system. The valus a,b c of some 
systems are listed in the Table 2 

They have developed a method for estimating the diame-
ters and diameter- distribution from the UV spectra [42]. 

Einevol (1989) used both EMA and TB model and gives a 
new model known as Effective bond order model (EBOM). In 
the method he used effective mass model (k.p) for the conduc-
tion band and tight-binding methods for the valence bands to 
determine the energy states in low dimensional structures. 
Later, Ramakrishna and Friesner [43] used the Empirical 
pseudo-potential method to calculate the band structure of 
CdS and GaP nanocrystals upto 30Å radius in the zinc-blende 
phase. The calculated variation agrees quite well with the ex-
perimental data points. Lin-Wang Wang, Alex Zunger and 
coworkers [44-49] also employed the semi-empirical pseudo-
potential method in semiconductor nanostructures. They cal-
culate the electronic structure of Si [44], CdSe [46] and InP [47] 
quantum dots. Quantitative theoretical approaches have been 
employed during the two decades to improve the model to 
determine the exact electronic structures of semiconductor 
nanoparticles, by using different perturbations and boundary 
condition in the Hamiltonian. Sercel and Vahala (1990) have 

introduced non-parabolic bands in the k.p perturbation theory 
and calculated quantum-dot band structure of GaAs(AlGaAs) 
and InAs(GaSb) systems. 

Each of the above models has its own advantage and limita-
tion. In fact, the EMA and EBOM overestimate confinement 
energies, but the TB model to gives an underestimated picture. 
It is also recognizing that the methods break down for the 
smallest nanoparticles (<1nm), because of possible surface and 
interface along with structural changes. 

CONCLUSION  

In this review, work of various researchers on electronic 
structure of semiconductor nanomaterial is discussed. In last 
four-decade, people have attempted to find out the exact 
Hamiltonian as well as the potential function for the electron 
confined in the nanostructure material. For spherical semicon-
ductor nanostructure material (semiconductor nanoparticle) 
the theoretical results approximately similar with the experi-
mental results. However, semiconductor nanostructure with 
different shape and size lot of work is to be done to find an 
sutable potential function.      
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